一、前言

其实想写LORA模型训练很久了,一直没时间,总结一下现在主流的两种LORA模型训练方式,分别是朱尼酱的赛博丹炉和秋叶大佬的训练脚本,训练效果应该是赛博丹炉更好,我个人更推荐朱尼酱的赛博丹炉,界面炫酷,操作简单,作者也是花了很多心思的。我会逐一介绍两种LORA模型训练方法。

二、朱尼酱的赛博丹炉

1.介绍
  • 全新U升级,赛博炼丹、科技修仙:大功能
  • 首页新增产品,建筑两个训川练预设:
  • 升级中英文双语TAG编辑器,支持实时翻译中英文输入TAG:
  • 新增自定义参数,正则化训川练集功能:
  • 新增自定义参数,分层训练功能:易用性
  • 更换wd14 tagger标签器(可自定义可信度阈值
  • 更换anime抠图核心,同时兼容二次元与真人
  • 优化自定义参数,学习率增加加减按钮功能,方便调整
  • 新增参数预设管理器功能,可自定义并管理自己的预设参数(支持中文预设名)
  • 输出训川练参数到模型文件夹,方便统计xyz信息

最新的赛博丹炉已经整合到道玄界面了,就是一个新的压缩包文件,里面不仅可以使用赛博丹炉训练LORA模型,还可以在上面生图,但是对我来说用处不大,我只需要他的训练脚本,因为习惯在秋叶启动器使用了,而且更方便更全面,不过如果有新手伙伴想用的话,可以去使用支持一下博主.

img

2.解压配置

下载完百度网盘压缩包后,解压后点击

cybertronfurnace1.4cfurnace_uiCybertron Furnace.exe

img

第一次打开会下载一些文件,请耐心等待!直到出现server start

img

img

3.使用

开启炼丹炉,让我们使用把!

img

训练准备
首页设置

我们需要准备使用的基础模型(大模型),和我们的训练集图片。现在我以自己举例开始演示!

基础模型使用麦橘的majicMIX realistic_v5 preview.safetensors作为底模,点击选择我们的大模型路径,召唤词可以自己命名一个,样张预览开启,就是训练的时候每50步会生成一张图查看训练效果。

好了,点击人物,确定到下一步!

上传素材

img

训练集最好准备50张图片,包含不同角度,你的训练集质感越高,你训练出来的效果也越好,可能几个epoch就能达到很好的效果,如果训练集模糊。质感差,100张图片,20个epoch效果也很差!

分辨率不用改,或者改成768×768,

模式选择抠图填白,就是去除背景,只保留人物做训练

TAG选择自动TAG,使用的是WD1.4TAG反推器

标签可信度阈值默认0.35,数值越小TAG越多,数值越大TAG越少,就是设置越小,反推生成TAG越多

如果训练脸部请勾选,最后点击预处理

img

后台可以查看进度,一般是先抠图,后TAG反推。ok,抠图完成,脸部也单独提取出来了

img

img

TAG反推也完成了,你还可以为每张图增加一些提示词,如光影,质感等词汇

img

我这里整理一些,把这些TAG全部新增到每张图片,别忘了脸部也新增一下。

Best quality,masterpiece,ultra high res,(photorealistic:1.4),raw photo,Kodak portra 400,film grain,

img

顺便推荐一个中文自动转英文的功能,打中文点击红框,自动转英文。需要的按我步骤操作一下,

img

查看进度

img

先别点击开始训练,查看进度界面,点击参数调优

img

学习步数默认50步,,epoch可以选择20,batch size可以选择4,优化器Adam,没训练一个epoch保存一次权重(模型),Precision选择半精度(负2的15次方到2的15次方之间的数),调度器默认,余弦退火就是学习率曲线类似余弦函数一样,先增大后减小,重启次数应该就是周期数,暂时默认不填。

总步数就是50x50x20/4=12500步,假如50张图片,如果加强脸部训练,步数翻倍。

img

我只讲一下关键参数,其他默认,学习率默认,网络维度选128,效果比较好,训练出来的lora模型文件大小144M,这也是为什么市面上不同的lora大小模型,网络维度128,64,32,分别对应144M,72M,36M网络Alpha需要调成和网络维度一样,或者一半。如网络维度128,网络Alpha128或64。样图分辨率设置成和前面图片预处理一样,如果是768×768,那么这里也改成768×768。如果爆显存就默认别改了。

样图设置可以随意不影响,可以每50步生成一次,第二个就不用改了,基本默认就行,种子随意都行,样本生成的提示词选一个。

img

分层训练,可以查看下图,仅帮助理解,因为lora仅仅是训练一部分网络架构,不是全部unet,unet网络就是一个u型网络架构,先进行下采样在进行上采样,中间一层就是中间层。之前写过stable diffusion原理时候讲过Unet,有兴趣看看。

img

如果没有特殊需求分层设置先默认不填,其他设置中可以加载预训练模型,如果你上次训练了一个模型没跑完,只训练8个epoch,效果不好,可以加载模型路径继续训练节省时间。正则化就是防止过拟合,如果想要开启正则化,点击开启。然后把你的图片放入正则化文件夹就行。

参数调整完毕!!回到界面,点击开始训练!!!

img

之后就开始训练了,耐心等待,可以查看日志,模型保存的路径点击模型即可,

img

我们所有的训练数据都在这,包括训练集,日志,模型,正则化目录

img

可以看到,样图,训练的参数配置文件,以及每个epoch的模型都保存在这,建议分别在前中后选取模型测试效果,epoch少的不一定差。对了,文件名可以改的,不影响。

img

到此,赛比丹炉介绍完毕了!!!应该很详细了,点个赞给博主提提神把,下面开始秋叶大佬的!

三、秋叶的lora训练器

img

1.下载

下载完毕后解压后,先点击国内加速强制更新,然后点击启动脚本

img

进入界面,一般使用新手模式就行,专家模式可以调节更多参数,可能更好,但也可能得到更差的效果,所以建议使用新手界面就行,提高训练集的质量才能大幅度提高训练效果。

2.预处理

其实跟上面的差不多,把训练集的路径导入,阈值这里默认0.5,那么我们就0.5把,附加提示词还是一样,把光影,质感等等加上去,其他不改。之后点击右下角启动!

Best quality,masterpiece,ultra high res,(photorealistic:1.4),raw photo,Kodak portra 400,film grain,

img

img

通过日志可以知道完成了,这里没有抠图填白,加强脸部训练等功能,只有TAG反推,

img

3.参数调配

img

注意,在这里训练集和大模型,需要复制到训练器目录下,有点繁琐,然后再把训练集路径和大模型路径填入,

训练集复制到该目录下,20是repeat数,每张图片你要重复训练多少次,把这个数字改成几。

img

大模型复制到该路径下

img

把路径改好如下,其他参数其实和上面差不多,如果上面的能理解这里也一样。

img

参数如下

pretrained_model_name_or_path = "./sd-models/majicmixRealistic_v6.safetensors"
train_data_dir = "./train/aki"
resolution = "512,512"
enable_bucket = true
min_bucket_reso = 256
max_bucket_reso = 1_024
output_name = "aki"
output_dir = "./output"
save_model_as = "safetensors"
save_every_n_epochs = 2
max_train_epochs = 20
train_batch_size = 1
network_train_unet_only = false
network_train_text_encoder_only = false
learning_rate = 0.0001
unet_lr = 0.0001
text_encoder_lr = 0.00001
lr_scheduler = "cosine_with_restarts"
optimizer_type = "AdamW8bit"
lr_scheduler_num_cycles = 1
network_module = "networks.lora"
network_dim = 128
network_alpha = 128
logging_dir = "./logs"
caption_extension = ".txt"
shuffle_caption = true
keep_tokens = 0
max_token_length = 255
seed = 1_337
prior_loss_weight = 1
clip_skip = 2
mixed_precision = "fp16"
save_precision = "fp16"
xformers = true
cache_latents = true
persistent_data_loader_workers = true
lr_warmup_steps = 0
sample_prompts = "./toml/sample_prompts.txt"
sample_sampler = "euler_a"
sample_every_n_epochs = 2

点击开始训练即可

img

img

模型训练完成会保存在在output中!

img

OK,到此完毕了!如果对你有帮助的话,请点个赞,谢谢!!

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

对于0基础小白入门:

如果你是零基础小白,想快速入门AI绘画是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!

零基础AI绘画学习资源介绍

👉stable diffusion新手0基础入门PDF👈

(全套教程文末领取哈)
在这里插入图片描述

👉AI绘画必备工具👈

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉AI绘画基础+速成+进阶使用教程👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉12000+AI关键词大合集👈

在这里插入图片描述

这份完整版的AI绘画全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。